Modeling and Autonomous Flight Simulation of a Small Unmanned Aerial Vehicle
نویسندگان
چکیده
This paper describes the use of FlightGear, an open-source flight simulator, and JSBSim, an open source flight dynamics model, to model and simulate a small autonomous Unmanned Aerial Vehicle (UAV). A small commercial electric engine Cessna-182 radio controlled (RC) aircraft was chosen to represent the UAV. The first step was to create the required JSBSim aircraft configuration files by using the Aeromatic v0.8, a free web application to create aircraft configuration files for use with the JSBSim. The next step was to make educated guesses to refine important sections in the created configuration files with the assistance of available data of similar UAV. In order to perform a visual simulation, a 3D model for the Cessna-182 (RC) was created using AC3D, a commercial 3D modeling software tool. To fly the modeled UAV autonomously a tuning process was made for the built-in generic PID (proportional, integral, and derivative) autopilot of FlightGear, which has the ability to hold aircraft velocity, vertical aircraft speed, altitude, pitch angle, angle of attack, bank angle, and true heading. Finally, a flight path, which contains a number of waypoints chosen over a selected area using Google Earth map, was constructed. In order to use the chosen waypoints with FlightGear navigation system, a unique ID was assigned to each waypoint, and the FlightGear database was altered to include the new waypoints with their IDs. The outcome of the paper was a complete JSBSim flight dynamic model for the Cessna-182 (RC), with 3D model for visual simulation and an effective autopilot. A good autonomous flight simulation was performed. This paper concluded that modeling and simulating a UAV accurately is not an easy task, due to the need to calculate many parameters either by physical measurements, experiments, or estimation from available data of similar UAV, or by software tools.
منابع مشابه
Modeling, Control, and Flight Testing of a Small Ducted Fan Aircraft
Small ducted fan autonomous vehicles have potential for several applications, especially for missions in urban environments. This paper discusses the use of dynamic inversion with neural network adaptation to provide an adaptive controller for the GTSpy, a small ducted fan autonomous vehicle based on the Micro Autonomous Systems’ Helispy. This approach allows utilization of the entire flight en...
متن کاملRapid prototyping flight test environment for autonomous unmanned aerial vehicles
Test facility is essential for most of engineering research activities, from modeling and identification to verification of algorithms/methods and final demonstration. It is well known that flight tests for aerospace vehicles are expensive and quite risky. To overcome this, this paper describes a rapid prototyping platform for autonomous unmanned aerial vehicles (UAV) developed at Loughborough ...
متن کاملMotion Control of TUAV having Eight Rotors for Enhanced Situational Awareness
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory...
متن کاملQuadrotor UAV Guidence For Ground Moving Target Tracking
The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...
متن کاملTail-sitter UAV having one tilting rotor: Modeling, Control and Real-Time Experiments
In this paper we address the development of a single-rotor tail-sitter Unmanned Aerial Vehicle (UAV), whose configuration provides structural benefits for flight stabilization. The mathematical model of the vertical take-off landing (VTOL) aircraft is obtained through the Newton-Euler approach. In order to stabilize the vehicle we employ a control algorithm based on separated saturation functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009